Towards an Optimal Gradient-dependent Energy Functional of the PZ-SIC Form
نویسندگان
چکیده
Results of Perdew–Zunger self-interaction corrected (PZ-SIC) density functional theory calculations of the atomization energy of 35 molecules are compared to those of high-level quantum chemistry calculations. While the PBE functional, which is commonly used in calculations of condensed matter, is known to predict on average too high atomization energy (overbinding of the molecules), the application of PZ-SIC gives a large overcorrection and leads to significant underestimation of the atomization energy. The exchange enhancement factor that is optimal for the generalized gradient approximation within the Kohn-Sham (KS) approach may not be optimal for the self-interaction corrected functional. The PBEsol functional, where the exchange enhancement factor was optimized for solids, gives poor results for molecules in KS but turns out to work better than PBE in PZ-SIC calculations. The exchange enhancement is weaker in PBEsol and the functional is closer to the local density approximation. Furthermore, the drop in the exchange enhancement factor for increasing reduced gradient in the PW91 functional gives more accurate results than the plateaued enhancement in the PBE functional. A step towards an optimal exchange enhancement factor for a gradient dependent functional of the PZ-SIC form is taken by constructing an exchange enhancement factor that mimics PBEsol for small values of the reduced gradient, and PW91 for large values. The average atomization energy is then in closer agreement with the high-level quantum chemistry calculations, but the variance is still large, the F2 molecule being a notable outlier.
منابع مشابه
Variational, Self-Consistent Implementation of the Perdew-Zunger Self-Interaction Correction with Complex Optimal Orbitals.
A variational, self-consistent implementation of the Perdew-Zunger self-interaction correction (PZ-SIC), based on a unified Hamiltonian and complex optimal orbitals, is presented for finite systems and atom-centered basis sets. A simplifying approximation allowing the use of real canonical orbitals is proposed. The algorithm is based on two-step self-consistent field iterations, where the updat...
متن کاملImplementation and reassessment of the Perdew-Zunger self-interaction correction
Density functional theory (DFT) using semi-local functional approximations can describe many chemical properties to high accuracy, but in some cases large and even qualitative errors emerge. Some of these errors are ascribed to an unphysical interaction of each electron with itself, which is present as a result of the approximations made in the exchange-correlation functional. The Perdew-Zunger...
متن کاملThe effect of the Perdew-Zunger self-interaction correction to density functionals on the energetics of small molecules.
Self-consistent calculations using the Perdew-Zunger self-interaction correction (PZ-SIC) to local density and gradient dependent energy functionals are presented for the binding energy and equilibrium geometry of small molecules as well as energy barriers of reactions. The effect of the correction is to reduce binding energy and bond lengths and increase activation energy barriers when bond br...
متن کاملCritical assessment of the self-interaction-corrected–local-density-functional method and its algorithmic implementation
We calculate the electronic structure of several atoms and small molecules by direct minimization of the self-interaction-corrected–local-density-approximation ~SIC-LDA! functional. To do this, we first derive an expression for the gradient of this functional under the constraint that the orbitals be orthogonal and then show that previously given expressions do not correctly incorporate this co...
متن کاملScaling down the Perdew-Zunger self-interaction correction in many-electron regions.
Semilocal density functional approximations (DFAs) for the exchange-correlation energy suffer from self-interaction error, which is believed to be the cause of many of the failures of common DFAs, such as poor description of charge transfer and transition states of chemical reactions. The standard self-interaction correction (SIC) of Perdew and Zunger mends some of these failures but spoils suc...
متن کامل